
Literature Review of Model Based Test case
Prioritization

 Shweta A. Joshi 1, Prof. B.S. Tiple2

1Master of Computer Engineering student, MAEER’s MIT,

University of Pune- 411038, Maharashtra, India

2Associate Professor, MAEER’s MIT,

University of Pune- 411038, Maharashtra, India

Abstract— Software testing always “Performing Verification
and Validation of the Software Product” for its correctness
and accuracy of working. Every time it is not possible to
perform each and every test case. Hence it is important to
decide test case prioritization.
The major goal of Test case prioritization is to prioritize the
test case sequences and finding the faults as early as possible to
improve efficiency of testing. In Component Based Software
Development (CBSD) software are implemented using
reusable components either they may be in-built components
or third party components. By gathering all these different
components final software product is constructed. In CBSD,
this whole process takes less time and works rapidly. As tester
is having limited access to source code of reusable components
so tester can face many difficulties. In such situations test cases
are ordered as per priority which can improve performance of
software.

Keywords— CBSD, Test Case, Test Case Prioritization.

I. INTRODUCTION

 As software time to market becomes shorter day by day,
there is significant increase in the use of commercial off the
shelf components. Component-Based Software System
(CBSS) can run properly and effectively. Component-
Based Software Development (CBSD) approach builds
software systems by assembling pre-existing components
under well-defined architecture which brings high
reusability and easy maintainability to the component, and
reduces its time-to-market. Therefore the productivity of
software systems is improved and the development cost is
also reduced. This paper is organized as follows. In section
I, it gives an introduction to the Component-Based
Software Development process. Section II contains the
related research papers used for the survey process. Section
III concludes the paper and the future work is present in the
last section.

II. LITERATURE REVIEW

In last few years there were many publications discussed
the concept of component based testing. In this section all
these work is discussed and relates to the proposed work
later on.

A. Code Based Test Case Prioritization

Test case prioritization based on system’s source code is
also known as code based prioritization.

1. Test Case Prioritization [1]

This paper defines how to prioritize the test cases according
to the use of APFD (Average percentage of Faults detected)
value. He suggested a new technique which is able to
calculate the average number of faults found per minute by
a test case and using this value it sorts the test cases in
decreasing order. As Stated, APFD value is determined for
both the prioritized and non-prioritized test suite and it is
shown that the APFD value of prioritized test suite is
comparatively higher than the non-prioritized test suite.
Problem occurred with this technique was calculation of
APFD is only possible when prior knowledge of faults is
available.

2. Test Case Prioritization: An Empirical Study [2]

Whereas Rothermel et al. worked with the test case
prioritization by investigating the nine prioritization
techniques. These techniques stated as:

T1: No prioritization.
T2: Random prioritization.
T3: Optimal prioritization.
T4: Total branch coverage prioritization.
T5: Additional branch coverage prioritization.
T6: Total fault-exposing-potential (FEP) prioritization.
T7: Additional fault-exposing-potential (FEP)

prioritization.
T8: Total statement coverage prioritization.
T9: Additional statement coverage prioritization.

The analytical results shown that the prioritization
techniques can increase the fault detection rate of test cases
and finally observed their relative work to perform fault
detection quickly. While FEP-based prioritization
techniques are not much cost-effective.

Shweta A. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6736-6738

www.ijcsit.com 6736

3. Efficient Test case Prioritization in Regression
Testing [3]

After working on suggested issues Prashant et al. [3],
presented his work to provide the regression test framework
which sequences the test cases based on code coverage.
First the test suite is selected then sequencing is done based
on some criteria. By using this approach Testers marked the
affected portion of code with help of business analyst and
development team and select the test cases.
The study shows that the prioritized test cases achieve
greater coverage in earlier execution phase than the non-
prioritized test cases but percentage code coverage
decreases as the execution moves in case prioritized test
suite. In non-prioritized test suite execution, it varies as per
the period and depends on the test cases executed during
that period. Also results may vary if prioritization is done
using different criteria like methods, block, classes or its
combination.

4. Search Algorithms for Regression Test Case
Prioritization [4]

Performing some outcomes, Li et al, focused on test case
prioritization techniques for code coverage, which involves
block coverage, decision (branch) coverage, and lastly
statement coverage. Finally each code based test
prioritization must have knowledge of

 Total Statement Coverage
 Total Function Coverage
 Additional Statement Coverage
 Additional Function Coverage

B. Model Based Test Case Prioritization

5. Experimental Comparison of Code Based and
Model Based Test prioritization [5]

After discussing problems faced by code based
prioritization techniques Korel et al. performed a small
evaluation test to verify efficiency of both simple code-
based and model-based test prioritization techniques. The
target of this experiment was to evaluate these methods to
check performance of early fault detection in the modified
system. This analysis result set shown that model based test
prioritization may improve the early fault detection as
compared to the code based test prioritization because the
execution of the model is very fast as compared to the
execution of the actual system. Therefore, execution of the
model for the whole test suite is cheaper as compared with
code based test case prioritization.

6. Application of System Models in Regression Test
Suite Prioritization [6]

After performing some experiments again Korel et al,
prioritized the test cases by using several model-based test
prioritization heuristics. It had few issues that selective
model based prioritization considers only the number of
executions of marked transitions which does not have a
significant influence on the improvement of the early fault
detection.

C. Requirement Based Test Case Prioritization

7. Requirements-Based Test Case Prioritization [7]

After facing some problems with model based prioritization
Srikanth et al.[7], invented a new prioritization scheme
with three main studies: defining faults as early as possible,
to increase the software quality and to derive and utilize the
minimum dataset of PORT(Prioritization of Requirements
for Testing) PFs (Prioritization Factors) which can be used
to efficiently for test case prioritization. It focuses on
variety of issues like;

(a) If requirements have high complexity then it leads to
maximum number of faults,

(b) If requirements volatility problem is there, then it
needs re-design, or some kind of modifications of relative
requirements, which tends to project risks, also increased
bugs that results in project failures.

 8. Component Interaction Graph: A new approach to
test component composition [8]

In this paper Acharya et al. generated invented test kind of
cases for testing components in component composition
technology. Acharya defined one methodology by which
components interact with each other using a Component
Interaction Graph (CIG). For representing CIG it is
mandatory to declare state chart diagram as input nothing
but it needs to work with behavioral aspect of the system.

9. Techniques for testing component-based software [9]

After performing some experiments Wu et al. proposed
that testing is realized using a Component Interaction Graph
(CIG) by which the interactions and the dependence
relationships among components can be elaborated. Major
problem occurred with model dependence- based test
prioritization that it requires multiple state transitions while
doing interactions among all components in system.

10. A Model based prioritization technique for
component based software retesting using UML state
chart diagram [10]

This paper proposes new technique of prioritizing test cases
which takes CIG as input along with the old test cases and
also author have to consider the total number of state
changes and total number of database access i.e. direct and
indirect access encountered due to each test case. The
existing model based test prioritization methods can only be
used when models are modified during system maintenance.

III. CONCLUSION

For prioritizing test cases there are many algorithms
which present a new approach for testing the
component-based software systems. The studies show
that testing of component-based software systems is
necessary yet expensive. Here more importance is given
to component interactions because maximum defect occur
when components are going to interact with each other.
This approach is mainly applicable to test the component

Shweta A. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6736-6738

www.ijcsit.com 6737

composition in case of component based software
maintenance.
Finally our algorithm is found to be very effective in

 Maximizing the objective function.
 Minimizing the cost of system retesting.

Future Challenges
In future we can extend this work as; the system can use
regression testing it can be done by testing interconnected
test cases (group of paths) instead of testing every single
test case , which might prove little complex but less time
consuming.

IV. ACKNOWLEDGEMENT

 I feel immense pleasure while presenting this work
and am very thankful to my guide Prof. B.S. Tiple, Dept. of
Computer Engineering of Maharashtra Institute of
Technology, Pune for her valuable suggestions and support.
 I would like to express my sincere thanks to our senior
professor and M.E. Coordinator Prof. Mangesh Bedekar
for teaching me the fine points which are helpful for this
completing work. I am also thankful to our Principal of
MIT, Pune Dr. L. K. Kshirsagar for his consent to go
forward with this topic.

VII. REFERENCES
[1] P. R. Srivastava, “Test Case Prioritization,” Journal of Theoretical

and Applied Information Technology, JATIT 2008.
[2] G. Rothermel, R.H.Untch, C.Chu, M.J.Harrold, “Test Case

Prioritization: An Emperical Study,” in Proceedings of the 24th IEEE
International Conference Software Maintenance (ICSM ’1999)
Oxford, U.K, September 1999.

[3] P. Malangave, D. B. Kulkarni, “Efficient Test case Prioritization in
Regression Testinng”.

[4] Z.Li, M. Harman, and R. M. Hierons,” Search Algorithms for
Regression Test Case Prioritization,” IEEE Transactions on Software
Engineering, Vol. 33, No. 4, April 2007.

[5] B. Korel, G. Koutsogiannakis, “Experimental Comparsion of Code
Based and Model model Based Test prioritization,” IEEE 2009.

[6] B. Korel, G. Koutsogiannakis, and L.H.Tahat, “Application of
System Models in Regression Test Suite Prioritization,” in
Proceedings of the 24thIEEE International Conference Software
Maintenance (ICSM ’08) pp.247- 256, 2008.

[7] Hema Srikanth and Laurie Williams, “Requirements-Based Test
Case Prioritization,” North Carolina State University, ACM
SIGSOFT Software Engineering, pages 1-3, 2005.

[8] A. A. Acharya, S. K. Jena, “Component Interaction Graph: A new
approach to test component composition,” Journal of Computer
Science and Engineering, Volume 1, Issue 1, May 2010.

[9] Y. Wu, D. Pan and M. Chen, “Techniques for testing component-
based software,” In Proceedings of the 7th IEEE International
Conference on Engineering of Complex Computer Systems. pp. 222-
232, 2001.

[10] Sanjukta Mohanty, Arup Abhinna Acharya, Durga Prasad Mohapatra,
“A Model based prioritization technique for Component based
software retesting using UML state chart diagram”. 2011 IEEE Third
Int’l Conf. on Electronics Computer Technology.

[11] Sanjukta Mohanty, Arup Abhinna Acharya, Durga Prasad Mohapatra,
“A survey on model based test case prioritization” International
Journal of Computer Science and Information Technologies, Vol. 2
(3) , 2011, 1042-1047.

[12] G. Rothermel, R. Untch, M. Harrol, “Prioritizing Test Cases For
Regression Testing,” IEEE Transactions on Software Engineering,
volume 27, No. 10, pp. 929-948, 2001.

 [13] Arup Abhinna Acharya and Sisir Kumar Jena, “Component
Interaction Graph: A new approach to test component composition”
Vol 2(3), 2011, 1042-1047.

Shweta A. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6736-6738

www.ijcsit.com 6738

